Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Brain Behav Immun ; 119: 607-620, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38663772

The vagus nerve, a pivotal link within the gut-brain axis, plays a critical role in maintaining homeostasis and mediating communication between the gastrointestinal tract and the brain. It has been reported that gastrointestinal infection by Salmonella typhimurium (S. typhimurium) triggers gut inflammation and manifests as anxiety-like behaviors, yet the mechanistic involvement of the vagus nerve remains to be elucidated. In this study, we demonstrated that unilateral cervical vagotomy markedly attenuated anxiety-like behaviors induced by S. typhimurium SL1344 infection in C57BL/6 mice, as evidenced by the open field test and marble burying experiment. Furthermore, vagotomy significantly diminished neuronal activation within the nucleus of the solitary tract and amygdala, alongside mitigating aberrant glial cell activation in the hippocampus and amygdala. Additionally, vagotomy notably decreases serum endotoxin levels, counters the increase in splenic Salmonella concentration, and modulates the expression of inflammatory cytokines-including IL-6, IL-1ß, and TNF-α-in both the gastrointestinal tract and brain, with a concurrent reduction in IL-22 and CXCL1 expression. This intervention also fostered the enrichment of beneficial gut microbiota, including Alistipes and Lactobacillus species, and augmented the production of gamma-aminobutyric acid (GABA) in the gut. Administration of GABA replicated the vagotomy's beneficial effects on reducing gut inflammation and anxiety-like behavior in infected mice. However, blockade of GABA receptors with picrotoxin abrogated the vagotomy's protective effects against gut inflammation, without influencing its impact on anxiety-like behaviors. Collectively, these findings suggest that vagotomy exerts a protective effect against infection by promoting GABA synthesis in the colon and alleviating anxiety-like behavior. This study underscores the critical role of the vagus nerve in relaying signals of gut infection to the brain and posits that targeting the gut-brain axis may offer a novel and efficacious approach to preventing gastrointestinal infections and associated behavioral abnormalities.

2.
J Ethnopharmacol ; 329: 118147, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38574779

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic steatohepatitis (NASH) is a common metabolic liver injury disease that is closely associated with obesity and metabolic disorders. Paeonol, an active ingredient found in Moutan Cortex, a traditional Chinese medicine which exhibits significant therapeutic effect on liver protection, has shown promising effects in treating liver diseases, particularly NASH. However, the specific intervention mechanism of paeonol on NASH is still unknown. AIM OF THE STUDY: Our objective is to elucidate the pharmacological mechanism of paeonol in intervening NASH at the in vivo level, focusing on the impact on intestinal flora, tryptophan-related targeted metabolome, and related Aryl hydrocarbon receptor (AhR) pathways. MATERIALS AND METHODS: Here, we explored the intervention effect of paeonol on NASH by utilizing the NASH mouse model. The Illumina highthroughput sequencing technology was preformed to determine the differences of gut microbiota of model and paeonol treatment group. The concentration of Indoleacetic acid is determined by ELISA. The intervention effect of NASH mouse and AhR/NLRP3/Caspase-1 metabolic pathway is analyzed by HE staining, oil red O staining, Immunohistochemistry, Immunofluorescence, Western blot and qRT-PCR assays. Fecal microbiota transplantation experiment also was performed to verify the intervention effect of paeonol on NASH by affecting gut microbiota. RESULTS: Firstly, we discovered that paeonol effectively reduced liver pathology and blood lipid levels in NASH mice, thereby intervening in the progression of NASH. Subsequently, through 16S meta-analysis, we identified that paeonol can effectively regulate the composition of intestinal flora in NASH mice, transforming it to resemble that of normal mice. Specifically, paeonol decreased the abundance of certain Gram-negative tryptophan-metabolizing bacteria. Moreover, we discovered that paeonol significantly increased the levels of metabolites Indoleacetic acid, subsequently enhancing the expression of AhR-related pathway proteins. This led to the inhibition of the NOD-like receptor protein 3 (NLRP3) inflammasome production and inflammation generation in NASH. Lastly, we verified the efficacy of paeonol in intervening NASH by conducting fecal microbiota transplantation experiments, which confirmed its role in promoting the AhR/NLRP3/cysteinyl aspartate specific proteinase (Caspase-1) pathway. CONCLUSIONS: Our findings suggest that paeonol can increase the production of Indoleacetic acid by regulating the gut flora, and promote the AhR/NLRP3/Caspase-1 metabolic pathway to intervene NASH.

3.
Food Funct ; 14(2): 1072-1086, 2023 Jan 23.
Article En | MEDLINE | ID: mdl-36594429

Candida albicans is a common opportunistic pathogen and normally resides in the human gut. Increasing number of reports link the overgrowth of C. albicans to the severity of ulcerative colitis (UC). Sodium houttuyfonate (SH), a derivative of the medicinal herb Houttuynia cordata Thunb, has been demonstrated to exhibit decent antifungal and anti-inflammatory activities. We showed previously that SH could ameliorate colitis mice infected with C. albicans. However, it is unclear whether the therapeutic effect of SH is connected to its modulation of intestinal microflora in UC. In this study, the impact of SH on the gut microbiota was explored in both cohabitation and non-cohabitation patterns. The results showed that in UC mice inflicted by C. albicans, the administration of SH could greatly improve the pathological signs, weaken the oxidative stress and inflammatory response, and enhance the intestinal mucosal integrity. By 16S rRNA gene sequencing, we found that C. albicans interference caused intestinal microbiota dysbiosis accompanied by an increase of some harmful pathogens including Klebsiella and Bacteroides. In contrast, SH could modulate the abundance and diversity of microbiota with an increase of several beneficial bacteria comprising short-chain fatty acid-producing bacteria (Lachnospiraceae_NK4A136_group, Intestinimonas) and probiotics (Lactobacillus and Alloprevotella). Furthermore, the cohabitation strategy could also prove the efficacy of SH, indicating a role of transmissible gut flora in the colitis model. These findings suggest that SH might be an effective compound for the treatment of UC complicated by C. albicans overgrowth through maintaining gut microbiota homeostasis, thereby improving intestinal function.


Colitis, Ulcerative , Colitis , Gastrointestinal Diseases , Gastrointestinal Microbiome , Houttuynia , Humans , Animals , Mice , Colitis, Ulcerative/pathology , Candida albicans , Houttuynia/genetics , RNA, Ribosomal, 16S/genetics , Colitis/drug therapy , Dextran Sulfate/pharmacology , Disease Models, Animal , Colon/pathology
4.
Front Pharmacol ; 13: 927384, 2022.
Article En | MEDLINE | ID: mdl-36160385

Platycodon grandiflorus (Jacq.) A. DC. (PG) root is one of the most commonly used medicine-food materials for respiratory discomfort in Asia, usually in the form of a decoction or leaching solution. As everyone knows, both of decoction and leaching solution is a polyphase dispersion system, containing low-molecular-weight water-soluble active ingredients and hydrophilic macromolecules. This study aimed to discuss the synergistic effect of Platycodon grandiflorus polysaccharide (PGP) and platycodin D (PD) in PG decoction against chronic bronchitis (CB) and the mechanism underlying. A series of PGP, PD, and PGD + PD suspensions were administrated to CB model rats, on the levels of whole animal and in situ intestinal segment with or without mesenteric lymphatic vessels ligation. It exhibited that PGP exhibited synergistic effects with PD, on improving the histopathological abnormity, mucus secretion excess, and immunological imbalance in lung of CB model rat, closely associated with its modulations on the mucosal immunity status in small intestine. The polysaccharide macromolecules in PG decoction or leaching solution should be responsible for the modulation of pulmonary immune state, possibly through the common mucosal immune between small intestine and lung. These results might be a new perspective that illustrates the classical theory of "the lung and intestine are related" in traditional Chinese medicine.

5.
Virulence ; 13(1): 428-443, 2022 12.
Article En | MEDLINE | ID: mdl-35195502

Candida albicans and Candida glabrata are two common opportunistic fungi that can be co-isolated in oropharyngeal candidiasis (OPC). Hypha is a hallmark of the biofilm formation of C. albicans, indispensable for the attachment of C. glabrata, which is seldom in mycelial morphology. Increasing evidence reveals a hypoxic microenvironment in interior fungal biofilms, reminding of a fact that inflammation is usually accompanied by oxygen deprivation. As a result, it is assumed that the disaggregation of hypha-mediated hypoxia of biofilms might be a solution to alleviate OPC. Based on this hypothesis, sodium houttuyfonate (SH), a well-identified traditional herbal compound with antifungal activity, is used in combination with fluconazole (FLU), a well-informed synthesized antimycotics, to investigate their impact on filamentation in C. albicans and C. glabrata dual biofilms and the underlying mechanism of their combined treatment on OPC. The results show that compared with the single therapy, SH plus FLU can inhibit the hyphal growth in the mixed biofilms in vitro, decrease the fungal burden of oral tissues and internal organs, restore mucosal epithelial integrity and function, and reduce hypoxic microenvironment and inflammation in a mice OPC model. The possible mechanism of the combined therapy of SH plus FLU can be attributed to the regulation of HIF-1α/IL-17A axis through direct abrogation of the dual Candida biofilm formation. This study highlights the role of HIF-1α/IL-17A axis and the promising application of SH as a sensitizer of conventional antifungals in the treatment of OPC.


Candidiasis, Oral , Fluconazole , Alkanes , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Biofilms , Candida albicans , Candida glabrata , Candidiasis, Oral/drug therapy , Candidiasis, Oral/microbiology , Fluconazole/pharmacology , Fluconazole/therapeutic use , Inflammation , Interleukin-17 , Mice , Microbial Sensitivity Tests , Sulfites
6.
Med Mycol ; 60(3)2022 Mar 04.
Article En | MEDLINE | ID: mdl-35099003

Oropharyngeal candidiasis (OPC) is an oral infection mainly caused by Candida albicans, a dimorphic human opportunistic pathogen that can proliferate and invade the superficial oral epithelium using its hyphae. The filamentation of C. albicans is a hallmark of biofilm formation, accompanied by the occurrence of a hypoxic microenvironment. Paeonol (PAE) is a traditional medicine with multiple properties. In a previous study, we demonstrated the synergism of PAE plus Fluconazole (FLU) or Amphotericin B (AmB) against C. albicans in vitro and in vivo. This study aimed to explore the therapeutic mechanisms of drug combinations on OPC. In an established OPC mouse model, the culture of hypoxia was observed by calcofluor white and hypoxyprobe staining. The expression and levels of IL-17 signaling-associated genes and proteins (IL-17A and IL-23) were evaluated in tissue homogenates and EC109 cells. The results show that compared with the single therapy, PAE plus FLU or AmB can decrease fungal burden, restore mucosal integrity, and reduce the hypoxic microenvironment and inflammation in the OPC mice. Relative to infected mice, the drug combinations can also rectify the abnormal expression of hypoxia inducible factor (hif)-1α, il-17a, and il-23 mRNA. Meanwhile, compared with the infected EC109 cells treated with a single drug, PAE plus FLU or AmB significantly inhibited the mRNA and protein expression of HIF-1α, IL-17A, and IL-23. Taken together, the possible mechanism of PAE plus FLU or AmB can be attributed to the regulation of hypoxia-associated IL-17 signaling in OPC treatment.


Acetophenones , Amphotericin B , Candidiasis, Oral , Fluconazole , Acetophenones/pharmacology , Acetophenones/therapeutic use , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida albicans/drug effects , Candidiasis, Oral/drug therapy , Fluconazole/pharmacology , Fluconazole/therapeutic use , Interleukin-17/genetics , Mice , Microbial Sensitivity Tests
7.
Biofouling ; 37(8): 922-937, 2021 09.
Article En | MEDLINE | ID: mdl-34615415

This study aimed to evaluate the mono- and dual- antifungal activities of paeonol (PAE) and fluconazole (FLZ)/amphotericin B (AmB). To this end, the effects of PAE and FLZ/AmB on cell surface hydrophobicity, hydrolase activity, morphological transition were investigated in vitro and in a Galleria mellonella infection model. The results showed a relatively high minimum inhibitory concentration (MIC) and sessile MIC (SMIC) of PAE alone. However, compared with the single drug, the combined use of PAE and FLZ/AmB had a potent synergistic potential to inhibit the virulence factors for Candida. The concomitant use of two drugs was consistently more effective than either drug alone for increasing survival rate, decreasing the fungal burden, and alleviating the pathological features of G. mellonella infected by the fungus. Taken together, these findings demonstrate the anti-Candida effects of PAE plus FLZ/AmB and their potential to increase the sensitivity of C. albicans to FLZ/AmB of PAE.


Amphotericin B , Fluconazole , Acetophenones , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Candida albicans , Fluconazole/pharmacology , Microbial Sensitivity Tests , Virulence , Virulence Factors
8.
J Glob Antimicrob Resist ; 27: 253-266, 2021 12.
Article En | MEDLINE | ID: mdl-34700054

OBJECTIVES: Candida albicans is the most clinically prevalent cause of systemic fungal infections in the immunocompromised population. The biofilm-forming ability of C. albicans confers resistance to conventional antifungal agents. The main aim of this study was to investigate the antifungal effects of ethyl caffeate (EC) alone and in combination with fluconazole (FLU) against C. albicans isolates. METHODS: The single and combined antifungal activities of EC and FLU were evaluated against planktonic and biofilm cells of C. albicans by the checkerboard assay, time-kill test, crystal violet assay, live/dead staining, rhodamine 6G (R6G) efflux analysis and hydrolase activity. Monotherapy and dual therapy of EC and FLU against systemic candidiasis in a mouse model was also evaluated. RESULTS: The results showed that EC+FLU displayed synergism in 14/26 planktonic C. albicans isolates and 11/26 C. albicans biofilms with fractional inhibitory concentration index (FICI) values ranging between 0.06-0.49 and 0.02-0.38, respectively. Compared with monotherapy, the combination of EC+FLU can markedly inhibit adhesion, yeast-to-hyphae transition, premature and mature biofilm metabolism, hydrolase secretion and drug efflux function of C. albicans Z1407 and Z4935. Moreover, EC can potentiate the antifungal activity of FLU to improve mouse survival, reduce fungal burden and alleviate pathological damage in both C. albicans isolates compared with EC or FLU used alone. CONCLUSION: EC exhibits a moderate antifungal potential but can be a strong synergist with FLU against C. albicans, highlighting the potential of EC in clinical antifungal therapy as a sensitiser.


Candida albicans , Fluconazole , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Caffeic Acids , Candidiasis , Drug Synergism , Fluconazole/pharmacology , Mice , Virulence Factors
9.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3915-3925, 2021 Aug.
Article Zh | MEDLINE | ID: mdl-34472268

This study explored the mechanism of Sanhuang Decoction(SHD) in treating dextran sulfate sodium(DSS)-induced ulcerative colitis(UC) in mice with Candida albicans(Ca) colonization via high-throughput transcriptome sequencing. Specifically, the animal model was established by oral administration of 3.0% DSS for 7 days followed by intragastrical administration of Ca suspension at 1.0 × 10~8 cells for 4 days and then the mice were treated with SHD enema for 7 days. Afterwards, the general signs were observed and the disease activity index(DAI) was recorded every day. After mice were sacrificed, colon length and colon mucosa damage index(CMDI) were determined and the histomorphology was observed with the HE staining method. The fungal loads of feces were detected with the plate method. Anti-saccharomyces cerevisiae antibody(ASCA) and ß-1,3-glucan in serum, and TNF-α, IL-1ß, and IL-6 in serum and colon were detected by ELISA. High-throughput RNA sequencing method was adopted to identify transcriptome of colon tissues from the control, model and SHD(15.0 g·kg~(-1)) groups. Differentially expressed genes(DEGs) among groups were screened and the GO and KEGG pathway enrichment analysis of the DEGs was performed. The expression levels of NLRP3, ASC, caspase-1, and IL-1ß genes related to the NOD-like receptor signaling pathway which involved 9 DEGs, were examined by qRT-PCR and Western blot. The results demonstrated that SHD improved the general signs, decreased DAI and Ca loads of feaces, alleviated colon edema, erosion, and shortening, and lowered the content of ß-1,3-glucan in serum and TNF-α, IL-1ß, and IL-6 in serum and colon tissues of mice. Transcriptome sequencing revealed 383 DEGs between SHD and model groups, which were mainly involved in the biological processes of immune system, response to bacterium, and innate immune response. They were mainly enriched in the NOD-like signaling pathway, cytokine-cytokine interaction pathway, and retinol metabolism pathway. Moreover, SHD down-regulated the mRNA and protein levels of NLRP3, caspase-1, and IL-1ß. In a word, SHD ameliorates DSS-induced UC in mice colonized with Ca, which probably relates to its regulation of NOD-like receptor signaling pathway.


Colitis, Ulcerative , Animals , Candida albicans/genetics , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Colon , Dextran Sulfate/toxicity , Disease Models, Animal , Drugs, Chinese Herbal , High-Throughput Nucleotide Sequencing , Mice , Transcriptome
10.
Chin Med ; 16(1): 75, 2021 Aug 10.
Article En | MEDLINE | ID: mdl-34376226

BACKGROUND: Ulcerative colitis (UC) is an important inflammatory phenotype in bowel disease (IBD), which is caused by multiple potential factors, including fungal dysbiosis. Candida albicans (C. albicans) was confirmed to be an important factor promoting the occurrence and development of UC. Sanhuang decoction (SHD) has been used for UC therapy in China for thousand of years, although its core active constituents and pharmacological mechanism remain undefined. METHODS: In this work, a murine model of UC with C. albicans colonization was established with dextran sodium sulfate (DSS) and C. albicans intragastric administration. The major bioactive constituents and potential mechanism of SHD against UC with fungal dysbiosis were comprehensively examined by combining systems pharmacology and in vivo transcriptomics. RESULTS: SHD attenuated C. albicans burden, reduced DAI, increased mucosal integrity and relived systemic inflammation in UC mice. Systems pharmacology analysis identified 9 core bioactive ingredients and 45 hub targets of SHD against UC. Transcriptomics analysis confirmed 370 differentially expressed genes (DEGs) after SHD treatment, which were mainly enriched in inflammatory and immune response related signaling pathways. Toll-like receptor and PI3K-Akt signaling pathway were screened out as the candidate targets involved in the action of SHD on fungal dysbiosis-associated UC, which were consistent with the findings in systems pharmacology. The expression of TLR4, IL-1ß, NF-κB, PI3K and Akt proteins were stimulated by C. albicans, and partially reversed by SHD in UC mice. CONCLUSION: These findings suggested SHD could be a candidate for the treatment of fungal dysbiosis-associated UC via TLR4-NF-κB and PI3K-Akt signaling pathways.

11.
J Leukoc Biol ; 110(5): 927-937, 2021 11.
Article En | MEDLINE | ID: mdl-33682190

Inflammatory bowel disease (IBD) including Crohn's disease and ulcerative colitis is a chronic intestinal disease most likely associated with gut dysbiosis. Candida related mycobiota has been demonstrated to play a role in IBD progression. Traditional Chinese herbal medicines (TCHMs) with antifungal activity have a potential in prevention and treatment of fungi-related IBD. Sodium houttuyfonate (SH) is a promising anti-Candida TCHMs. In this study, a dextran sulfate sodium induced colitis model with Candida albicans precolonization is established. SH gavage can significantly decrease the fungal burdens in feces and colon tissues, reduce disease activity index score, elongate colon length, and attenuate colonic damages. Moreover, SH markedly inhibits the levels of anti-Saccharomyces cerevisiae antibodies, ß-glucan, and proinflammatory cytokine (IL-1ß, IL-6, IL-8, TNF-α), and increases anti-inflammatory factor IL-10 level in serum and colon tissue. Further experiments demonstrate that SH could induce ß-glucan exposure, priming intestinal macrophages to get rid of colonized C. albicans through the collaboration of Dectin-1 and TLR2/4. With the decreased fungal burden, the protein levels of Dectin-1, TLR2, TLR4, and NF-κBp65 are fallen back, indicating the primed macrophages calm down and the colitis is alleviated. Collectively, these results manifest that SH can attenuate C. albicans associated colitis via ß-glucan exposure, deepening our understanding of TCHMs in the prevention and treatment of fungi associated IBD.


Alkanes/pharmacology , Candida albicans/drug effects , Colitis/microbiology , Gastrointestinal Microbiome/drug effects , Sulfites/pharmacology , Animals , Colitis/chemically induced , Dextran Sulfate/toxicity , Dysbiosis/microbiology , Mice , beta-Glucans
12.
Front Mol Biosci ; 8: 799934, 2021.
Article En | MEDLINE | ID: mdl-34977158

Background and Aim: It is known that hyperlipidemia and low vitamin D level are risk factors associated with cardiovascular disease (CVD). However, the effect of vitamin D administration on lipid profiles in postmenopausal women remains unclear. This study aims to evaluate the effect of vitamin D on lipid profiles in postmenopausal women based on meta-analysis and systemic review. Methods: The literature search was performed in multiple databases (Scopus, PubMed/Medline, Web of Science, and Embase) from 1997 to 2021. The statistical analysis was performed using the Stata software version 14 (Stata Corp. College Station, Texas, United States). The effects of vitamin D administration of the lipid profiles, including Triacylglycerol (TG), LDL-Cholesterol (LDL-C), HDL-Cholesterol (HDL-C), and Total Cholesterol (TC) were evaluated by the Der Simonian and Laird random effects model. The weighted mean difference (WMD) and 95% confidence intervals (CI) were calculated. Results: The level of TG changed significantly by -3.76 mg/dl (CI: -6.12 to -1.39, p = 0.004) and HDL-C by 0.48 mg/dl (CI: -0.80 to -0.15, p = 0.004) in vitamin D administration group [11 eligible trials (placebo = 505 participants, vitamin D intervention = 604 participants)] compared to the control group in the postmenopausal women. Taking into account this comparison between groups, in contrast, the level of LDL-Cholesterol (LDL-C) (WMD: 0.73 mg/dl, 95% CI: -1.88, 3.36, p = 0.583) and TC (WMD: 0.689 mg/dl, CI: -3.059 to 4.438, p = 0.719) did not change significantly. Conclusion: In conclusion, the vitamin D administration in postmenopausal women, decreased the concentrations of TG, and HDL-C, but have no effects on LDL-C and TC.

13.
Med Mycol ; 59(4): 335-344, 2021 Apr 06.
Article En | MEDLINE | ID: mdl-32598443

Inflammatory bowel disease (IBD), which consists of ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammatory disorder of the gastrointestinal tract. Occurrence and development of UC have been associated with multiple potential causative factors, which include fungal dysbiosis. Growing evidence reveals that Candida albicans-associated dysbiosis is correlated with clinical deterioration in UC. Paeonol (PAE) is a commonly used traditional medicine with multiple reported properties including effective alleviation of UC. In this study, a murine UC model was established by colonizing mice with additional C. albicans via gavage prior to dextran sodium sulfate (DSS) administration. Effects of PAE treatment were also assessed at initiation and in preestablished C. albicans-associated colitis. The results showed that C. albicans supplementation could aggravate disease activity index (DAI), compromise mucosal integrity, exacerbate fecal and tissue fungal burdens, increase serum ß-glucan and anti-Saccharomyces cerevisiae antibody (ASCA) levels, promote serum and colonic tissue pro-inflammatory cytokine secretion (tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and IL-8) and decrease the anti-inflammatory cytokine IL-10 level. It also stimulated Dectin-1, TLR2 and TLR4 as well as expression of their downstream effector NF-κB in colonic tissue. After PAE treatment, the adverse impacts of C. albicans on colitis were relieved, via decreased receptor-associated local and systemic inflammation. Our study suggests that PAE should be a candidate for treatment of fungal dysbiosis-associated UC and may act through the Dectin-1/NF-κB pathway in collaboration with TLR2 and TLR4. LAY SUMMARY: Candida albicans is believed to be an important stimulator in ulcerative colitice (UC) development. Suppressing the growth of intestinal C. albicans can be contributory to the amelioration of UC. Paeonol (PAE) is a commonly used traditional medicine with multiple biological functions. In this study, we observed that PAE could alleviate symptoms in mice UC model accompanying with burden reduction of C. albicans. Therefore, we suppose that PAE can be a candidate in the treatment of C. albicans-associated UC.


Acetophenones/therapeutic use , Candida albicans/drug effects , Colitis, Ulcerative/prevention & control , Dysbiosis/microbiology , Inflammation/drug therapy , Animals , Candida albicans/pathogenicity , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/microbiology , Cytokines/analysis , Cytokines/immunology , Dextrans/administration & dosage , Disease Models, Animal , Female , Medicine, Chinese Traditional , Mice , Mice, Inbred C57BL , Plant Extracts/immunology , Plant Extracts/therapeutic use , Signal Transduction/drug effects , Sulfates/administration & dosage
14.
Med Mycol ; 59(2): 158-167, 2021 Feb 04.
Article En | MEDLINE | ID: mdl-32453815

Candida albicans and Candida glabrata are frequently coisolated from the oral cavity in immunosuppressive or immunocompromised individuals. Their relationship is usually defined as competition as C. glabrata can inhibit growth of C. albicans in cohabitation. In this study, eight C. albicans isolates as well as two C. glabrata strains were used to investigate the effects of culture medium (Roswell Park Memorial Institute [RPMI]-1640, YPD, YND), incubation time (24 h, 48 h, 72 h, 96 h), initial inoculum (C. glabrata: C. albicans = 2:1, 1:1, 1:2), and medium state (static and dynamic states) on viable cell enumeration and relative abundance in both Candida SB and MB. The results showed that in most cases, C. glabrata and C. albicans SB and MB flourished in RPMI-1640 at 24 h under dynamic state compared with other conditions. Except YPD medium, there were high proportions of preponderance of C. albicans over C. glabrata in MB compared with SB. High initial inoculum promoted corresponding Candida number in both SB and MB and its abundance in MB relative to SB. This study revealed an impact of several environmental conditions on the formation of C. albicans and C. glabrata SB and MB and their abundance in MB in comparison with SB, deepening our understanding of both Candida interaction and their resistance mechanism in MB. LAY SUMMARY: This study described the effects of diverse experimental conditions on the numbers of Candida albicans and Candida glabrata single biofilms and mixed biofilms and their abundance.


Biofilms/growth & development , Candida albicans/physiology , Candida glabrata/physiology , Microbial Interactions , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/growth & development , Candida glabrata/drug effects , Candida glabrata/growth & development , Culture Media , Humans , Microbial Sensitivity Tests , Microbial Viability
15.
Front Pharmacol ; 11: 572375, 2020.
Article En | MEDLINE | ID: mdl-33123010

As a major opportunistic pathogen, Pseudomonas aeruginosa can produce various virulence factors and form biofilms. These processes are controlled by the quorum sensing (QS) system. Sodium new houttuyfonate (SNH) is an adduct of houttuyfonate, the main component of the common Chinese medicine plant Houttuynia cordata, which has antibacterial and anti-inflammatory effects. We evaluated the effect of SNH on P. aeruginosa biofilms, virulence factors, and transcription. Transcriptome analysis showed that the key rhlI and pqsA genes of the P. aeruginosa QS system were down-regulated after SNH treatment. SNH reduces proteases and pyocyanin production and inhibits biofilm formation by regulating the P. aeruginosa QS system. SNH also changes the expression of genes related to virulence factors and biofilms (lasA, lasB, lecA, phzM, pqsA, and pilG). These results suggested that the mechanism of SNH against P. aeruginosa by affecting the expression of biofilm and virulence factors controlled by quorum sensing.

16.
Front Microbiol ; 11: 2075, 2020.
Article En | MEDLINE | ID: mdl-32983053

Here, we aim to investigate the antifungal effect and mechanism of action of sodium new houttuyfonate (SNH) against Candida albicans. Microdilution analysis results showed that SNH possesses potent inhibitory activity against C. albicans SC5314, with a MIC80 of 256 µg/mL. Furthermore, we found that SNH can effectively inhibit the initial adhesion of C. albicans. Inverted microscopy, crystal violet staining, scanning electron microscopy and confocal laser scanning microscopy results showed that morphological changes during the transition from yeast to hypha and the biofilm formation of C. albicans are repressed by SNH treatment. We also found that SNH can effectively inhibit the biofilm formation of clinical C. albicans strains (Z103, Z3044, Z1402, and Z1407) and SNH in combination with fluconazole, berberine chloride, caspofungin and itraconazole antifungal agents can synergistically inhibit the biofilm formation of C. albicans. Eukaryotic transcriptome sequencing and qRT-PCR results showed that SNH treatment resulted in significantly down-regulated expression in several biofilm formation related genes in the Ras1-cAMP-Efg1 pathway (ALS1, ALA1, ALS3, EAP1, RAS1, EFG1, HWP1, and TEC1) and significantly up-regulated expression in yeast form-associated genes (YWP1 and RHD1). We also found that SNH can effectively reduce the production of key messenger cAMP in the Ras1-cAMP-Efg1 pathway. Furthermore, using Galleria mellonella as an in vivo model we found that SNH can effectively treat C. albicans infection in vivo. Our presented results suggest that SNH exhibits potential antibiofilm effects related to inhibiting the Ras1-cAMP-Efg1 pathway in the biofilm formation of C. albicans.

17.
Zhongguo Zhong Yao Za Zhi ; 45(13): 3211-3219, 2020 Jul.
Article Zh | MEDLINE | ID: mdl-32726031

To observe the efficacy of cinnamaldehyde on dextran sulfate sodium(DSS)-induced ulcerative colitis(UC) with Can-dida albicans(Ca) colonization and its effect on dectin-1/TLRs/NF-κB signaling pathway in mice. C57 BL/6 mice were randomly divided into normal group, DSS group, DSS+Ca group, cinnamaldehyde group and mesalazine group. Mice in DSS+Ca group were given Ca(1×10~8 CFU per mouse) through intragastrical administration for 4 consecutive days and then distilled water with 3.0% DSS for 7 consecutive days. In cinnamaldehyde group and mesalazine group, in addition to the induction method of the DSS+Ca group, mice were given 75 mg·kg~(-1) cinnamaldehyde and 200 mg·kg~(-1) mesalazine accompanied with 3.0% DSS for 7 consecutive days, respectively. Mice in normal group and DSS group were correspondingly administered with distilled water. The general conditions of the mice were observed daily, the diseased activity index(DAI) score was calculated, and fungal loads of feces were detected by plate method. The mice were sacrificed on day 12, colon length was measured, colon mucosa damage index(CMDI) score was calculated, and histopathological analysis was carried out by HE staining. Anti-saccharomces cerevisiae antibody(ASCA) and ß-1,3-glucan in serum, and TNF-α, IL-1ß, IL-6, IL-8, IL-10 in serum and colon tissue were detected by ELISA. The contents of ß-1,3-glucan and macrophage infiltration in colon tissues were examined by immunofluorescence staining. The protein expressions of dectin-1, TLR2, TLR4 and NF-κB were detected by Western blot and immunohistochemistry staining. The results showed that cinnamaldehyde could significantly improve the general conditions of UC mice with Ca colonization, decrease DAI and histopathological scores, reduce intestinal mucosal congestion, erosion and colon shortening, decrease Ca load in mouse feces and tissues, down-regulate the contents of ASCA and ß-1,3-glucan in serum, reduce the contents of TNF-α, IL-1ß, IL-6, IL-8 and increase IL-10 in serum and colon tissues, inhibit macrophages infiltration and down-regulate the protein expression of dectin-1, TLR2, TLR4 and NF-κB in colon tissue. These results suggested that cinnamaldehyde had a therapeutic effect on UC mice with Ca colonization, which might be related to the inhibition of Ca proliferation, the regulation of dectin-1/TLRs/NF-κB signaling pathways and the coordination of the balance between pro-inflammatory and anti-inflammatory factors.


Colitis, Ulcerative , Acrolein/analogs & derivatives , Animals , Candida albicans , Colon , Dextran Sulfate , Disease Models, Animal , Lectins, C-Type , Mice , NF-kappa B , Signal Transduction
18.
Biofouling ; 36(3): 319-331, 2020 03.
Article En | MEDLINE | ID: mdl-32410461

Traditional herbal monomers (THMs) are widely distributed in many traditional Chinese formulas (TCFs) and decoctions (TCDs) and are frequently used for the prevention and treatment of fungal infections. The antifungal activities of five common THMs, including sodium houttuyfonate (SH), berberine (BER), palmatine (PAL), jatrorrhizine (JAT) and cinnamaldehyde (CIN), and their potential for inducing cell wall remodeling (CWR), were evaluated against Candida albicans SC5314 and Candida auris 12372. SH/CIN plus BER/PAL/JAT showed synergistic antifungal activity against both Candida isolates. Furthermore, SH-associated combinations (SH plus BER/PAL/JAT) induced stronger exposure of ß-glucan and chitin than their counterparts, while CIN triggered more marked exposure compared with CIN-associated combinations (CIN plus BER/PAL/JAT). Collectively, this study demonstrated the anti-Candida effect and the CWR induction potential of the five THMs and their associated combinations, providing a possibility of their in vivo application against fungal-associated infections.


Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida/drug effects , Cell Wall/drug effects , Drugs, Chinese Herbal/pharmacology , Acrolein/analogs & derivatives , Acrolein/pharmacology , Alkanes/pharmacology , Berberine/analogs & derivatives , Berberine/pharmacology , Berberine Alkaloids/pharmacology , Humans , Microbial Sensitivity Tests , Sulfites/pharmacology
19.
J Leukoc Biol ; 108(1): 199-214, 2020 07.
Article En | MEDLINE | ID: mdl-32129526

Alcoholic liver disease (ALD) is caused by long-term consumption of alcohol and has become an important social and medical problem. Intestinal fungal flora (mycobiota) play an important role in ALD, so we used the mycobiota as an entry point to explore the mechanism of action of Paeonol against ALD. Here, we found that Paeonol is effective against ALD inflammatory lesions and relieves liver fat lesions. Furthermore, we found that after the treatment of Paeonol, the fungal dysbiosis is improved, and the fungal abundance is reduced, and the translocation of ß-glucan to the liver and its mediated Dectin-1/IL-1ß signaling pathway is blocked. Our study shows that paeonol ameliorated acute ALD-related inflammatory injury to the liver by alleviating intestinal fungal dysbiosis and inhibiting the mycobiota-mediated Dectin-1/IL-1ß signaling pathway.


Acetophenones/therapeutic use , Interleukin-1beta/metabolism , Lectins, C-Type/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/microbiology , Mycobiome/drug effects , Signal Transduction , Acetophenones/pharmacology , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Caspase 1/blood , Cholesterol/blood , Cluster Analysis , Dysbiosis/blood , Dysbiosis/complications , Dysbiosis/microbiology , Inflammation/pathology , Interleukin-1beta/blood , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Lipogenesis/drug effects , Liver/drug effects , Liver/metabolism , Liver/physiopathology , Liver Diseases, Alcoholic/blood , Liver Diseases, Alcoholic/physiopathology , Male , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/blood , Proteoglycans , Triglycerides/blood , beta-Glucans/blood
20.
BMC Womens Health ; 19(1): 110, 2019 08 13.
Article En | MEDLINE | ID: mdl-31409345

BACKGROUND: Postmenopausal osteoporosis (PMOP) has long been a pervasive public health concern. With the aging Chinese population, the prevention, assessment and management of postmenopausal osteoporosis were particularly important. During the breastfeeding, a large amount of Calcium loss from maternal bone for infants' growth. However, whether this loss is completely reversible remains controversial. As the relationship between breastfeeding and postmenopausal osteoporosis is different from society to society and is not clear from the literature, the purpose of this study was to determine whether breastfeeding was an independent factor for the development of PMOP based on Chinese postmenopausal population. METHODS: A retrospective cross-sectional investigation was conducted at Tianjin Xiaobailou health Community Healthcare Center between December 2017 and June 2018. Postmenopausal women over the age of 50 who underwent the annual health examination or visited the center to perform bone densitometry as a part of routine screening for disease were recruited. A trained community nurse administered a questionnaire to all participants by face-to-face interview. Participants were questioned about age, BMI, Vitamin D and calcium intake, the history of smoking, drinking and fracture, age of menarche, age of menopause, the number of pregnancy, parity, feeding pattern (breastfeeding, artificial feeding and mixed feeding) and overall breastfeeding duration. BMD measurements were carried out using quantitative ultrasound (QUS) at the bilateral radius. RESULTS: A total of 202 women who met the inclusive and exclusive criteria were enrolled. Univariate analysis revealed that overall breastfeeding more than 24 months increased the risk of osteoporosis (OR 39.00, 95%CI 2.40-634.65, p = 0.010). However, multivariate estimate of the risk of osteoporosis by overall breastfeeding duration suggested that when controlling for age, BMI, the number of pregnancy and parity, the overall breastfeeding duration was not an independent risk factor for postmenopausal osteoporosis (OR 5.22, 95%CI 0.18-147.76, p = 0.333). Additionally, age (OR 1.16, 95%CI 1.05-1.29, p = 0.003), BMI (OR 1.26, 95%CI 1.04-1.54, p = 0.021) and the number of pregnancy (OR 1.80, 95%CI 1.08-2.98, p = 0.024) were significant associated with postmenopausal osteoporosis. CONCLUSION: Breastfeeding was not associated with postmenopausal osteoporosis, while age, BMI and the number of pregnancy may contribute to increasing risk of postmenopausal osteoporosis in Chinese women.


Breast Feeding/statistics & numerical data , Osteoporosis, Postmenopausal/epidemiology , Age Factors , Aged , Body Mass Index , China/epidemiology , Cross-Sectional Studies , Female , Gravidity , Humans , Middle Aged , Osteoporosis, Postmenopausal/diagnosis , Retrospective Studies , Risk Factors , Time Factors
...